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Non-linear system identi"cation is used to generate models of modes in physical
structures. Analysis of the theoretical non-linear model of a cantilevered beam is used to
predict the inputs to the physical system that will produce responses suitable for enhanced
parameter estimation, thereby improving the model. Three identi"cation techniques are
described and applied to both numerical and experimental data: the "rst is based on the
continuous-time di!erential equation model of the system, the second uses relationships
generated by the method of harmonic balance, and the third is based on "tting steady state
response data to the amplitude and phase modulation equations resulting from a multiple
time scales analysis. The performance of each method improves as the non-linearities in the
system become more pronounced. The bene"ts and limitations of the methods are discussed.
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1. INTRODUCTION

Non-linear systems display a wide variety of interesting behavior, from jumps in the
response to amplitude-modulated motions and chaos. The conditions under which the
system exhibits a particular behavior depends on the system parameters, the initial
conditions and the nature of the excitation. Small changes in any of these may lead to very
di!erent response characteristics. Seeking out this interesting behavior in an experimental
system may be nearly impossible without analysis of accurate models of the system to guide
the experimenter, hence the need for system identi"cation to develop accurate models of the
system.

System identi"cation [1}5] is an iterative process, each iteration consisting of three major
components: model structure identi"cation, model parameter estimation, and model
evaluation. These components are not three distinct procedures: they are intertwined
because a model structure cannot be fully evaluated without knowing the model parameters
and determining how close the observed and predicted responses are. Broadly speaking,
there are three approaches to non-linear system identi"cation: physical model based;
non-parametric involving higher order spectra and Volterra kernal estimation; and hybrid
methods based on very general non-linear models. The last approach include regression
models with terms that are polynomial combinations of the states (displacement, velocity,
etc.), models with terms that are polynomial combinations of measurement samples, or
arti"cial neural network models. The third approach usually requires the use of model order
and term selection algorithms to prune the models [6}10]. In practice, all approaches
0022-460X/02/040785#29 $35.00/0 ( 2002 Academic Press
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require a priori knowledge of the system in order to make the identi"cation computationally
manageable. This knowledge may come directly from the physics of the system or from
observations and analysis of measurements of the system behavior.

While theory can occasionally be used to construct complete models of vibrating systems,
it is rare that these models fully predict the behavior of their physical counterparts. While
qualitative agreement between the theory and experiment is often achieved, indicating some
success with model structure identi"cation, quantitative agreement is more di$cult
[11}14], especially with more complex systems such as those with internal resonances
[15}17]. Imperfections in materials, non-ideal boundary conditions, and assumptions made
in the development of the analytical model, are typically the major causes of the
experiment}theory mismatch [18, 17]. As the validity of the assumptions deteriorates, the
gap between the physical system and the mathematical model behavior tends to grow. This
gap prompts a re-evaluation of assumptions, such as described in the work of Zaretzky and
Crespo da Silva [19], usually aided by observations of system responses under various
excitation conditions. This, in turn, leads to a restructuring of the theoretical model; this is
all part of the system identi"cation process.

Even when the model structure is correct, estimates of the parameters associated with
speci"c terms in the model will be poor if the response data used in the estimation is not
strongly dependent on the presence of those terms. The experimentalist, therefore, must
create excitation conditions to reveal the non-linearities (e.g., see references [11, 12]). The
problem is in determining the desirable excitation conditions. This is where analysis of the
theoretical model of the system plays an important role. Theoretical analysis based on
approximations to the model coe$cients could be used to determine regions where
signi"cant non-linear responses are most likely to occur. Experimentally exploring these
regions, and comparing model predictions to measured response characteristics can help
identify the excitations that result in the most useful data for system identi"cation.

The focus of this paper is on the evaluation of the performance of three parameter
estimation techniques when used to estimate the parameters of a model of the response of
one mode of a base excited cantilever beam undergoing transverse vibrations. The three
techniques are based on a continuous-time di!erential equation model of the system. One
technique utilizes the di!erential equation directly and the other two techniques are based
on approximations of the steady state response to harmonic excitation. The methods are
tested with steady state harmonic response data, because two of the methods are restricted
to this form of excitation. The approach is applied to a theoretical model for the beam
responding in its second mode of vibration. Extensive simulations were carried out to
determine the excitation conditions that would lead to accurate model parameter estimates,
and to determine the e!ect of the measurement procedure ("ltering, quantization, and
sampling) on the parameter estimation. The interplay of simulation and experiment is used
throughout the identi"cation procedure to help gain an understanding of the causes of
problems associated with accurate parameter estimation.

2. THEORETICAL INVESTIGATION

2.1. SINGLE MODE RESPONSE OF A CANTILEVER BEAM

A schematic of a horizontally mounted cantilevered beam subject to vertical excitation of
the clamped base is shown in Figure 1. If in-plane motions only are considered, the
equations of motion developed in references [17, 20] reduce to the following
integro-di!erential equation:



Figure 1. Theoretical con"guration for the base excited cantilever beam. System variables are: m, mass per unit
length; c, damping per unit length; Dm , bending sti!ness; A, amplitude of base displacement; X, forcing frequency; s,
reference variable; ¸, beam length.
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where && ) '' refers to derivative with respect to time, and && @ '' refers to derivative with respect
to the spatial co-ordinate s. The non-linear term on the left-hand side of the equation is due
to the curvature of the beam, and the one on the right-hand side is the result of inertial
e!ects. The non-linear terms that need to be included in the theoretical model are based on
the system's geometry, boundary conditions, and form of excitation. To make the analysis
more general, equation (2) is non-dimensionalized by applying the following scalings:
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which results in
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For simplicity, the &&* '' notation associated with dimensionless parameters and variables is
dropped, and in the rest of the development all the parameters are dimensionless.

Next, it is assumed that the response is dominated by one mode of vibration, the spatial
dependence being in the form of the linear mode shape, /(s). Hence, the response is written
as

v(s, t)"a (t)/ (s), (6)
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where / (s) is obtained by solving, with appropriate boundary conditions (equations (5)),
equation (4) with the forcing, damping and non-linear terms set to zero. This results in

/ (s)"C[sin(bs)!sinh(bs)!a(cos (bs)!cosh (bs))], (7)

where

a"
sin (b)#sinh (b)

cos (b)#cosh (b)

and where the amplitude C of the modal function has been chosen so that :1
0
/2ds"1. For

the second mode of the beam, the mode studied in the experiments described later, the
constant b"4)694091.

Substituting equation (6) into equation (4), multiplying the resulting expression by /(s),
and integrating over the length of the beam results in the temporal equation
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and the scaling coe$cient associated with the forcing term is

a
0
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1

0

/ds. (11)

Having determined the one-mode model for the base excited cantilever beam, the goal of
the research is to evaluate the various model parameter estimation techniques by estimating
the various linear and non-linear coe$cients in equation (4). The theoretical de"nitions of
these parameters in equations (9)}(11) will serve as one check on these techniques.

2.2. SYSTEM IDENTIFICATION METHODS

2.2.1. Continuous-time system identi,cation

In this identi"cation approach, measured or derived states at various times (e.g.,
displacement, velocity and acceleration) are used with the di!erential equation model of the
system to set up a matrix equation [5] to solve for the model parameters.

In the investigation, u
0

was measured experimentally and, therefore, is treated here as
a known parameter. Thus, equation (8) is re-written in vector form as
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where F (t)"(!AX2) cos (Xt). The elements of the vector P"[c, a
0
, a

1
, a

2
]T are referred

to as the model parameters which are the unknowns. The system's input F (t) and response
a(t) are measured and, by using the data at sample times, (t

i
), i"1, 2, 3,2,N, a known

vector K and a matrix A are generated. Here, K"[aK (t
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row vector on the right-hand side of equation (12) evaluated at a particular sample time.
Thus, for example, the "rst column of A is [!aR (t

1
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2
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3
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N
)]T. Now

assuming that the model parameters do not change with time, the parameter vector P may
be estimated by solving (in a least-squares sense) the matrix equation

K"A 'P. (13)

Typically for a one-mode model, only one of the states is measured in an experiment, and
the other states are calculated from this state by using numerical di!erentiation or
integration schemes [21]. This procedure tends to amplify, respectively, high- or
low-frequency noise, in the measurements. In the experiments described later, acceleration
measurements were integrated 2 times to produce estimates of velocity and displacement.
High levels of low-frequency noise resulting from the integrations can be reduced by
high-pass "ltering the state signals prior to forming the matrices A and K.

To avoid aliasing during the measurement process, signals are passed through low-pass
anti-aliasing "lters prior to sampling. Even if the excitation is at a single frequency, the
response of a non-linear system will contain higher harmonics, and the anti-aliasing "lter
will remove some of these harmonics. To ensure that information at frequencies associated
with signi"cant harmonics is not removed, sampling rates, and thus anti-aliasing cut-o!
frequencies, may have to be set at very high levels. High sample rates may also lead to
ill-conditioning of the set of equations used in the parameter estimation, which in turn can
lead to large parameter estimation errors.

The displacement measurements a(t) are bandlimited due to the anti-aliasing "lter,
and high frequencies are further attenuated in numerical integration. However, when
the non-linear functions of states are calculated to form the columns of A, they will
contain higher frequencies. For example, a3 (t), can contain frequencies up to 3 times the
highest frequency in a(t). Sample rates chosen in the original data acquisition may now be
too low to satisfy the Nyquist criterion for signals such as a3 (t). Thus, the order of the
non-linearities must be taken into account when choosing an appropriate sample rate, so
that no aliasing occurs when the signals that are non-linear functions of states are
calculated.

The use of anti-aliasing "lters causes errors by removing high-frequency content, and
these errors propagate in the calculation of signals that are non-linear functions of states.
These calculated signals, the columns of A, will have high-frequency content that has been
removed from the signal in the vector K, which is a linear function of the acceleration and
displacement. To reduce this mismatch of high-frequency information, the vector K, and the
signals that form the columns of A, can be digitally "ltered with a low-pass "lter having
a cut-o! frequency set at, or below, the analog anti-aliasing "lter cut-o! frequency. A simple
analysis that consists of splitting a into a low- and high-frequency part and low-pass
"ltering the terms of equation (8), can be shown to demonstrate that this does not
completely alleviate the problem, because of combinations of quadratic high-frequency
components multiplied by linear low-frequency components. However, if the
high-frequency components removed by the anti-aliasing "lters are small compared to the
low-frequency components, the resulting terms in the "ltered equations will be reasonably
accurate.
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2.2.2. Harmonic balance based identi,cation

In the harmonic balance method [22], the system's output is assumed to be a truncated
Fourier series whose fundamental frequency is related to the driving frequency. The Fourier
truncated series is then substituted into the di!erential equation and terms of the same
frequency are equated, resulting in a set of relationships between the spectral amplitudes of
the excitation and those of the response. These relationships are functions of the unknown
parameters in the di!erential equation.

Assume that the excitation and the response are of the form
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Rows 1}5 of equation (14) arise from equating the DC terms, the cos (Xt) terms, the sin (Xt)
terms, the cos (3Xt) terms, and the sin (3Xt) terms respectively. The spectral amplitudes of
the excitation (F
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calculate the terms in F and A. By collecting steady state response data over a range of
excitation frequencies (X ), functions F and A in equation (14) may be augmented, each
excitation frequency resulting in a set of "ve new equations. This augmented matrix
equation may be used to determine least-squares estimates of the model parameters, P.

In this particular example, because of the cubic form of the non-linearities, if F
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equation (14) may be rewritten as
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The terms in the third and fourth columns of A are as de"ned in equations (15), with a
0

set
to zero.

A larger number of terms may be assumed in the Fourier series, and the same approach
adopted, resulting in an expanded set of equations that are dependent on F

ic
, F

is
, a

ic
and a

is
,

where the subscript i denotes the order of the term in the Fourier series. In principle, using
a higher number of terms in the Fourier series leads to a more accurate approximation to
the solution. However, in a system identi"cation procedure, measured harmonic response
amplitudes are used to estimate the system parameters. If the higher harmonics' amplitudes
are small and sensitive to measurement noise, their inclusion will result in noisy terms in
F and A, and this will adversely a!ect the estimation of P. Thus, a trade-o! must be made
between a better approximation and the introduction of noisy terms in the estimation.

The amplitudes of the harmonic components of a (t) are estimated by "rst bandpass
"ltering the acceleration signal to remove low- and high-frequency noise; then modelling the
"ltered acceleration signal as a sum of harmonically related sine and cosine waves of known
frequencies and "tting the model to the "ltered data; and "nally twice integrating,
analytically, the terms in this estimated acceleration model. This was done in preference to
using fast Fourier transforms to determine spectral amplitudes, a method that su!ers from



792 T. A. DOUGHTY E¹ A¸.
spectral leakage due to windowing e!ects. The estimation of the spectral amplitudes is
described in greater detail in the next section. It is convenient to use accelerometers to
measure the beam's response, but in doing so the DC information in the displacement is
lost. In the present application this does not cause any problem because if F

0
is zero, then

a
0

is also zero. For other systems, e.g., those with quadratic non-linearities, this will not be
the case and thus a

0
must be determined through an addition measurement, or by directly

measuring displacement instead of acceleration.

2.2.3. Multiple time scales based identi,cation

The third method of system identi"cation utilizes the amplitude modulation equations
which result from a multiple time scales analysis [23] of the system. Prior to performing this
multiple time scales analysis, it is necessary to arrange the governing equation so that the
damping, forcing, and non-linearities are of the same order. A small parameter e is
introduced, where 0(e@1. Now, rescaling the parameters by

a"Jeb, a
0
(!AX2 )"eJe2kL , c"ecL , (17)

equation (8) becomes

bK#X2b"e2kL cos(Xt)!ea
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b3!ea

2
(bbR 2!b2bK )!ecL bR #epb, (18)

where the detuning, p, is introduced with

X2"u2
0
#ep. (19)

Note that in this formulation, the forcing amplitude kL and the detuning frequency may be
allowed to vary with time. While this freedom is not utilized in this study, both the
continuous-time and the multiple time scales based identi"cation methods may be applied
in a non-stationary investigation. Exploration of the advantages of non-stationary
excitation on parameter identi"cation is the subject of ongoing research.

In the method of multiple time scales, time-like independent quantities are introduced
such that
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With the small parameter and the multiple time scales thus de"ned, one can proceed in the
standard way [23] to construct an asymptotic approximation to the solutions of equation
(18). One can easily show that the "rst approximation to the solution is given by

b (t)"bL cos(Xt#c)#O(e), (21)
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where the amplitude, bL , and the phase, c, satisfy the modulation equations
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To determine the steady state solutions, the left-hand sides of these equations are set to 0. By
transforming back into the original non-dimensionalized variables, one gets the non-linear
equations
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Equations (23) are relatively simple and even when u2
0

is treated as an unknown in addition
to c, a

0
, a

1
and a

2
, they are a linear function of the unknown parameters. The results at each

excitation frequency, X, produce two equations of the form of equations (23). The set of
linear equations generated by measuring the response at several excitation frequencies are
solved in a least-squares sense to produce estimates of u2

0
, c, a

0
, a

1
and a

2
.

An alternative approach, adopted here, is to eliminate c from equations (23) and use the
resulting equation in amplitude only together with the estimate of u

0
from the free vibration

transient tests. The amplitude then satis"es the non-linear equation
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and the phase of the response is given by

A
X

tan (c)B c!A
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4
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1
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1

2
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2
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0
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The amplitude equation is more complicated and a non-linear "t to the data (aL and FK for
each frequency X) is necessary to identify the unknowns (c, a

0
, a

1
, and a

2
), even when u

0
is

assumed to be known. However, it does have the advantage that only amplitude
information is required from the experiments.

As the multiple time scales theory builds its approximation around the solution at the
fundamental frequency, this approach does not use higher harmonic information and, thus,
is less sensitive to experimental noise. Data is extracted at the fundamental response
frequency only, where the signal-to-noise ratio is very high. Limitations to this approach
come with the basic assumption that the damping, non-linearity, and forcing are all of the
same order, and small. The correctness of the estimated solution is dependent on this
smallness. In numerical investigations where these assumptions have been violated,
resulting parameter estimates have been poor.



Figure 2. The experimental con"guration for testing of a cantilever beam subjected to external base excitation.
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3. EXPERIMENTAL INVESTIGATION: EXPERIMENTAL APPARATUS AND
SAMPLE RESPONSES

Following is a description of the experimental set-up and the procedures for acquiring
and processing the transient decay and steady state measurements.

3.1. EXPERIMENTAL CONFIGURATION

A schematic of the experimental con"guration is given in Figure 2. The beam system was
excited with a 4500 lb (2)00kN) Thermotron electromechanical shaker. The large shaker
was chosen so that the beam response at resonance would only have a small in#uence on the
input amplitude. To further reduce this possible loading, the shaker feedback control
system, a proportional gain controller, was used and the acceleration amplitude of the beam
was maintained at a constant desired level.

The beams used were 0)125 in (0)318 cm)]2)0 in (5)008 cm) 6061 T6 Aluminum bar stock
cut and clamped to a length of 27 in (0)686m). The length corresponded to a theoretical
second natural frequency of 34)40Hz, or a non-dimensional frequency (ndf ) of 21)61. The
mounting apparatus (base) which secures the test specimen (beam) was machined out of
a single, 120 lb (54 kg), piece of 12'' aluminum round-stock.

Two PCB type 353B17 2 gram accelerometers were used to measure the base and beam
accelerations. The accelerometer signals were passed through PCB type 480E09 charge
ampli"ers with gain settings of 100 for the base-mounted accelerometer and 10 for the
accelerometer secured at a distance of 7 in (0)178m) from the clamped edge of the beam.
Prior to sampling, both signals were low-pass "ltered with a 24 dB/Octave roll-o!Wavetek
Dual Hi/Lo model 852 "lter with the cut-o! frequency set of 1 kHz. The Tektronix 2630
Fourier Analyzer and its Instrument Program software were used to acquire the excitation
and response data. These data measurement and analysis systems have 12-bit
analog-to-digital converters. Input amplitude ranges for both the excitation and response
channels were set to ensure that no saturation occurred at the maximum acceleration levels.

3.2. TRANSIENT DECAY MEASUREMENT AND ANALYSIS

To simplify the parameter estimation equations in the steady state testing and to monitor
any change in the beam properties during a set of tests, the transient response of the second
mode of the beam was measured and analyzed to produce estimates of the undamped
natural frequency (u

0
) and the damping ratio (f).



NON-LINEAR CANTILEVER BEAM 795
A low-amplitude sinusoidal excitation was generated and its frequency tuned to the
beam's second undamped natural frequency (u

0
) by determining the frequency at which the

input and output were 903 out of phase. Once the system had reached a steady state, the
excitation was quickly removed by turning down the signal ampli"er. The free vibration
decay was then captured at a rate of 2560 samples/s. The anti-aliasing "lter cut-o! was set
to 100Hz for this test. The damping factor, f, was then estimated by using the log decrement
technique [24]. Estimates of the natural frequency and damping ratio were in the range
33)90}34)47Hz (ndf : 21)30}21)66) and 0)001}0)004 respectively.

The very low damping ratio meant that the beam typically took 120 s before steady state
behavior was reached after changing the excitation parameters. Over the course of the
steady state testing the beam was excited at high amplitudes for long periods of time, and
this caused metal fatigue problems [25, 18]. Transient tests were used to ensure that the
natural frequency and damping of the second mode of the beam had not changed between
the start and end of the steady state tests. Changes greater than 0)029Hz were deemed as
evidence of the beam's properties having changed during the testing.

3.3. STEADY STATE TESTING

The input signals were stationary constant amplitude sine waves generated with
a C program controlling an Atlanta signal processing board. The board contains
a TMS320C30 chip connected to a two-channel 16-bit digital-to-analog converter (DAC).
The output of the DAC was low-pass "ltered to remove the high-frequency components
introduced by the zero order hold digital-to-analog converter. The DAC sample rate was
set to 10 kHz and the frequencies of the 35}75 excitation sinusoids used in the steady state
tests were in the range of 30}35Hz (ndf : 18)85}22)99). The analog reconstruction "lter
cut-o! frequency was set at 100Hz.

It was di$cult to maintain a constant amplitude acceleration at the base of the beam over
the range of input frequencies used because the shaker controller did not perform perfectly.
Fortunately, none of the identi"cation methods require the input amplitude to be constant
over all frequencies. The methods based on harmonic balance and multiple time scales
modelling require only that the input and output are at a steady state and that they are
measurable.

A computer-generated external trigger signal was used to initiate the acquisition of 4096
samples (1)6 s at 2560 samples/s) of the steady state signals. This results in the acquisition of
between 48 and 56 periods of the excitation, depending on the excitation frequency
(30}35Hz).

3.3.1. Number and placement of excitation frequencies

A detailed system identi"cation study was carried out to provide a rationale for choosing
sets of excitation frequencies in steady state tests on individual modes in structures. The
study utilized data from simulations of a Du$ng's equation with a hardening sti!ness
non-linearity. At higher amplitudes, four regions of response behavior can be identi"ed
depending on the number of possible solutions and the deviation from linear response
behavior. These are shown in Figure 3.

The second mode of the cantilever beam exhibits softening behavior. However, the results
of the system identi"cation study are still pertinent because the four response regions also
occur with the softening spring behavior, albeit in a di!erent order. A brief summary of the
results is given in the following paragraphs; details of the study are given in reference [26].



Figure 3. Illustration of regions of qualitatively di!erent response behavior. Regions I and IV, approximately
linear, region II, non-linear with one solution; region III, non-linear with two stable solutions.
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Many di!erent combinations of excitation frequencies from the four regions were utilized
to determine if having more data from regions II and III would improve the accuracy of the
parameter estimates. The total number of frequencies used was also varied as was the level
of noise corruption. The study showed that parameter estimates tended to converge as the
percentage of data from the non-linear regions (regions II and III) increased, and also as the
number of frequencies used increased. At signal-to-noise ratios of 70 dB, a level typically
encountered in well-controlled experiments, very little improvement in parameter estimates
was observed as the percentage of data from the non-linear regions increased beyond 50%,
and also as the total number of sinusoids increased above 40.

For the simulations, 832 examples of the response measurements were generated. Having
set the proportion of sinusoids in each region and the total number of sinusoids, the
frequencies were chosen randomly from this set of 832 "nely spaced frequencies. This
selection was repeated 100 times, and each time history was corrupted with a di!erent
realization of the noise time history scaled to give a prescribed signal-to-noise ratio. The
mean and the standard deviation of the parameter estimates were calculated. The results
from one set of simulations using harmonic balance estimation of the Du$ng system
parameters are plotted in Figure 4(a) against percentage of data from regions II and III. In
total, 16 sinusoids were used and regions I and IV contained the same number of sinusoids.
Another series of tests were conducted to track parameter estimates as a function of the
number of sinusoids used; these results are shown in Figure 4(b). For these tests, the
percentage in the non-linear regions was kept at 50%.

Based on these "ndings, the excitation frequencies used in the beam experiments were at
and around the beam's natural frequency with nearly 50% of the sinusoids lying in regions
II and III. In some of the experiments, the two solution region (now region II, because of the
softening behavior) was very small, and hence most of the strongly non-linear data came
from the adjacent region (now region III). Typically, a total of 40}60 sinusoids were used
and at least half of these were in regions II and III.

3.3.2. Measurement of input and steady state response amplitude and phase information

The multiple time scales and harmonic balance methods incorporate amplitude and
phase information, which requires the decomposition of the excitation and response into the
sum of a constant plus cosines and sines of frequencies that are multiples of the excitation
frequency (kX). In both methods, as described above, the amplitude and phase information
associated with the excitation frequency and certain harmonics may be used in the



Figure 4. Harmonic balance parameter estimates for a signal-to-noise ratio of 70 dB. (Upper plots) Undamped
natural frequency (u

0
), (center plots) damping coe$cient (c), (lower plots) non-linear sti!ness (k

3
).

Mean$standard deviation as a function of (a) the percentage of data in regions II and III, and (b) the number of
sinusoids used in the estimation.
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parameter estimation. However, in acceleration measurements, higher harmonics, DC
o!sets and other noise introduced by the instrumentation will be present. Therefore, in the
decomposition of the acceleration signal, the higher harmonics (up to 9X) and DC terms are
included. The components at the frequencies of interest are extracted for use in the
non-linear system identi"cation.

Several methods can be used to estimate the amplitude and phase information of
harmonic signals in the presence of noise [27]. Here, one has the added advantage of
knowing the frequencies of the periodic components present in the signal because the
excitation frequency (X) is known and the measurements are taken at steady state. The
system's response is modelled as

a (t)"A
0
#A

1c
cos(Xt)#A

1s
sin(Xt)#A

2c
cos(2Xt)#A

2s
sin(2Xt)#A

3c
cos(3Xt)

#A
3s

sin(3Xt)#2A
9c

cos(9Xt)#A
9s

sin(9Xt)#e(t), (26)
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where e (t) represents the model-data mismatch. Evaluating this equation for several
di!erent values of t"nD, n"1, 2, 3,2, results in a set of linear equations, that can be
written in matrix form as

A
cc
"M 'C#E, (27)

where A
cc

is the response acceleration vector containing a(nD), C contains the harmonic
amplitudes [A

0
, A

1c
, A

1s
, A

2c
, A

2s
,2, A

9c
, A

9s
]T, the matrix M contains rows of [1,

cos(XnD), sin(XnD), cos(2XnD), sin(2XnD),2 cos(9XnD), sin(9XnD)], and E contains
elements e(nD).

A
cc

and M are known and hence the spectral amplitudes contained in C can be solved for
in a least-squares sense. The spectral amplitudes are found for each measurement taken at
di!erent excitation frequencies (X). The displacement spectral amplitudes of the
components at the excitation frequency can be found analytically by integrating the terms
in the model, i.e., by dividing by !(kX)2. The excitation's spectral amplitudes, F

1c
(X) and

F
1s

(X), can be calculated in a similar manner. The cosine and sine spectral amplitude
estimates are used directly in the harmonic balance method, while in the multiple time scales
method a

1c
and a

1s
are squared and summed to generate the steady state amplitude aL in

equation (24).

3.3.3. Integrating the response for the continuous-time method

Digital "lters can be designed to emulate integrators. The bilinear transform, often used
in "lter design and digital control design, is an example of a digital "lter integrator that
performs trapezoidal integration [28]. The sampling rate needs to be high for this "lter to
work well as an integrator. Digital integrators amplify low frequencies in signals which are
often only present because of measurement noise. The response of the accelerometers used
in the experiments falls o! below 5Hz, resulting in a low signal-to-noise ratio in this region.
An alternative could be to combine a high-pass "lter and an integrator, making the cut-o!
frequency of the high-pass "lter above 5Hz and well below the excitation frequencies used
in the experiment.

However, based on the success of the signal modelling for the continuous time and the
multiple time scales methods, it was decided to take a di!erent approach to integration for
these relatively simple signals. The excitation and response signals were modelled as
described in the last section, and the DC component was removed. The model of the
measured acceleration signal was integrated analytically once to generate the velocity signal
and again to generate the displacement. The model was then used to construct the velocity
and displacement time histories, and the resulting vectors were used directly in the
construction of the matrix in equation (13).

Each column and the response vector is made to contain the same frequency range to
compensate for the loss of high-frequency information in x, xR , xK due to the use of
anti-aliasing "lters (see section 2.2.1). Higher-frequency information is present in the
columns that are non-linear functions of the displacement and velocity. If the signal model
is used to calculate the non-linear functions symbolically, it is easy to remove harmonics
above those that are retained in the original acceleration signal. An alternative approach,
equally successful if aliasing has not occurred, is to take the displacement and velocity time
histories, use them to calculate the non-linear function, "t a sum of harmonics of known
frequencies model the resulting time history, remove the high-frequency components and
reconstruct the signal. Both methods are e!ectively "ltering the columns of the estimation
matrix, as described in section 2.2.1, and have the advantage of avoiding the problems of
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transient responses that occur when using digital "ltering techniques to remove high
frequencies.

4. RESULTS

The three system identi"cation techniques described in the previous section are now
applied to numerically simulated data and to measurements from experiments on the beam.
The numerical data were generated by using the single-mode model given in equation (8).
The parameters used in the simulation came from equations (9)}(11) (a

0
, a

1
, and a

2
), and

from the free-vibration tests described earlier (u
0
, and c). A sinusoidal force of amplitude 1 g

was input to the system and time histories of the system response were generated by using
a fourth order Runge}Kutta routine. The step size was "xed to be 1/64th of the period of the
forcing. The integration routine introduces a time shift equal to the step size; this was
subsequently removed from the numerically generated displacement and velocity data. The
simulation was run until the system reached steady state, and then one period of the steady
state displacement and velocity data were stored. The displacement, velocity and input
history were used with the di!erential equation to generate the steady state acceleration
data. This process was repeated for excitations at di!erent frequencies; the frequencies used
were near to the beam's second natural frequency.

Before addressing the e!ectiveness of each method, it must be stressed that both the
harmonic balance and multiple time scales system identi"cation techniques are based on
approximate solutions to the di!erential equation model. As shown in Figure 5, the result of
these approximations is that the predicted response amplitudes tend to deviate from the
simulated response as the input amplitude increases. The harmonic balance prediction is
from a single frequency expansion, later both single frequency and multiple ("rst and third
harmonic) frequency expansions were used. In simulations, the amplitude of the input did
not exceed that of the intermediate curve (1)0 g), where the amplitude predictions from all
three methods were close and signi"cant non-linearity was still observed. At higher
amplitudes, a multiple time scale model that "t the steady state response data well would
contain biased parameter estimates because, the illustrated in Figure 5, the true parameters
would have produced a di!erent amplitude prediction.
Figure 5. Response curves from simulations with three input amplitudes (0)5 g, 1)0g, and 2)0g): ) ) ) ) ) ) , steady
state response; } } } } } , predictions based on harmonic balance;** , predictions based on multiple time scales.
Assumed system parameters are: u

0
"2)20]101, c"1)16]10~2, a

0
"4)34]10~1, a

1
"1)34]104,

a
2
"1)44]102.
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Keeping this in mind, system identi"cation was performed on numerical and
experimental data. The natural frequency (u

0
) was assumed to be known from the free

vibration tests, and the remaining parameters, including damping, were estimated by using
each of the three methods. Two variations of the methods were also investigated because of
the results from various simulations and experiments. First, the multiple time scales
approach was extended to incorporate the phase information and the parameters were
estimated from sets of equations based on equations (23). Secondly, in the experimental data
analysis the equations for the harmonic balance method with only one harmonic term were
also used for parameter estimation. The results of these two methods, when used, are shown
TABLE 2

Coe.cient estimates from experimental data at low amplitude excitation (1)0g)

Continuous Harmonic balance Multiple time scales
Parameter time ("rst harmonic only) (with phase)

u
0

("xed) 2)17]101 2)17]101 2)17]101
(2)17]101) (2)17]101)

c 1)21]10~1 1)21]10~1 1)54]10~1
(1)20]10~1) (1)20]10~1)

a
0

4)38]10~1 4)38]10~1 4)44]10~1
(4)36]10~1) (4.36]10~1)

a
1

!6)00]104 !5)98]104 !83)0]104
(!12)8]104) (!12)8]104)

a
2

!9)98]101 !9)93]101 !267)0]101
(!32)7]101) (!32)7]101)

a(
1

8)94]104 8)91]104 6)55]104
(8)71]104) (8)71]104)

TABLE 1

Coe.cient estimates with simulation data for high amplitude excitation (1)0g)

Actual Continuous Harmonic Multiple time scales
Parameter value time balance (with phase)

u
0

("xed) 2)20]101 2)20]101 2)20]101 2)20]101
(2)20]101)

c 4)42]10~2 4)43]10~2 4)43]10~2 5)24]10~2
(4)14]10~2)

a
0

4)34]10~1 4)36]10~1 4)36]10~1 4)34]10~1
(4)33]10~1)

a
1

1)34]104 1)39]104 1)39]104 2)92]104
(2)83]104)

a
2

1)44]102 1)46]102 1)46]102 1)92]102
(1)90]102)

a(
1

1)00]105 9)97]104 9)97]104 9)88]104
(9)87]104)



TABLE 3

Coe.cient estimates with simulation data at low amplitude excitation (0)5g)

Actual Continuous Harmonic Multiple time scales
Parameter value time balance (with phase)

u
0

("xed) 2)20]101 2)20]101 2)20]101 2)20]101
(2)20]101)

c 1)16]10~1 1)16]10~1 1)16]10~1 1)16]10~1
(1)16]10~1)

a
0

4)34]10~1 4)34]10~1 4)34]10~1 4)33]10~1
(4)34]10~1)

a
1

1)34]104 1)14]104 1)14]104 1)04]104
(1)27]104)

a
2

1)45]102 1)38]102 1)38]102 1)35]102
(1)42]102)

a(
1

10)0]104 9)97]104 9)97]104 9)95]104
(9)94]104)

TABLE 4

Coe.cient estimates from experimental data at high amplitude excitation (1)5g)

Continuous Harmonic balance Multiple time scales
Parameter time ("rst harmonic only) (with phase)

u
0

("xed) 2)17]101 2)17]101 2)17]101
(2)17]101) (2)17]101)

c 1)74]10~1 1)74]10~1 1)95]10~1
(1)75]10~1) (1)75]10~1)

a
0

4)34]10~1 4)34]10~1 4)57]10~1
(4)38]10~1) (4.38]10~1)

a
1

!7)83]104 !7)82]104 !7)35]104
(1)82]104) (1)83]104)

a
2

!1)68]102 !1)68]102 !1)53]102
(1)57]102) (1)57]102)

a(
1

8)22]104 8)21]104 8)15]104
(8)83]104) (8)83]104)
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in parentheses in Tables 1}4. In addition to the coe$cients of the non-linear terms, a
1
, a

2
,

a combination of these two terms, a(
1
, is also given, where a(

1
"!3a

1
#2u2

0
a
2
. This term

appears when slightly di!erent detuning is used when deriving the multiple time scales
equations, and in that case a

1
and a

2
do not appear other than in this combined form.

The parameter estimates were used to generate amplitude and phase response predictions
in order that they may be compared to the simulated or measured response amplitudes and
phases. The harmonic balance amplitude and phase equations were used with both the
continuous time and the harmonic balance parameter estimates to predict the system's



Figure 6. Response curves with simulation data for high amplitude excitation (1)0 g). K, steady state response;
) ) ) ) ) ), predictions based on continuous time estimates; } } } } } , predictions based on harmonic balance estimates;
**, predictions based on amplitude only multiple time scales estimates; } ) } } ) } , predictions based on
amplitude and phase multiple time scales estimates.
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response. The multiple time scales estimates were used in the multiple time scales amplitude
and phase equations.

4.1. FIRST SIMULATION

Amplitude and phase shifts for the numerically generated displacement responses are
shown in Figure 6 as a function of the excitation frequency. The response predictions using
the parameters estimated from di!erent techniques are also shown in this "gure, and the
parameter estimates are given in Table 1.

Most of the parameters are estimated well. The exceptions are the estimates of a
1

and a
2

resulting from the multiple time scales methods. The multiple time scales estimates of the
combined term, a(

1
, however, are reasonably accurate. Most of the response predictions are

good with the exception of the phase prediction using the multiple time scales without phase
information, and the amplitude prediction at high response levels using the multiple time
scales with phase information.

4.2. FIRST EXPERIMENT

The simulation results indicated that an accurate estimation of the system parameters
was possible. Therefore, input and output data were collected from the experimental system
forced at the same level of excitation (1 g), and the identi"cation steps were repeated. The
experimental response data along with the predicted responses using the estimated
parameters from the three identi"cation techniques are shown in Figure 7. The parameter
estimates are shown in Table 2.



Figure 7. Response curves with experimental data at low amplitude excitation (1)0 g). K, steady state response;
) ) ) ) ) ) , predictions based on continuous time estimates; } } } } } predictions based on harmonic balance estimates;
**, predictions based on amplitude only multiple time scales estimates; } ) } } ) } , predictions based on
amplitude and phase-multiple time scales estimates.
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Unlike in the simulation, the two solution region is either very small or not present in the
experimental data. This can partially be explained by the system's damping which was
estimated here to be nearly 3 times its value in the simulations. All methods produced
similar estimates for the damping coe$cient and the coe$cient of the forcing term. Each
method produced negative values for a

1
and a

2
, which is not consistent with their

theoretical de"nitions as given in equations (9) and (10). The combined term parameter, a(
1
,

was much closer to its theoretical value. The harmonic balance method based on a one-term
expansion gave estimates very close to those produced by the multiple time scales method
that uses phase information. Since these methods essentially use the same information,
perhaps this is not surprising.

As shown in Figure 7, the system's overall response was well predicted irrespective of
which set of estimated parameters were used, even though there were sometimes large
di!erences between the parameter estimates. The inclusion of phase information in the
multiple time scales estimation resulted in a better prediction of the phase response,
although with these parameters the model predicted larger response amplitudes than were
measured. The multiple time scales without phase estimates resulted in accurate predictions
of the response amplitudes.

Intuitively, non-linear parameter estimation is likely to be most successful when the data
used in the estimation is collected while the system is behaving nonlinearly. To determine
whether the poorer estimates were the result of data that were weakly in#uenced by the
system non-linearity, two more tests, a simulation and an experiment, were conducted.

4.3. SECOND SIMULATION

First, in order to investigate if the poor estimates were due to the lack of a large non-linear
response region, numerical data sets were generated which did not demonstrate the jump



Figure 8. Response curves with simulation data at low amplitude excitation (0)5 g). K, steady state response;
) ) ) ) ) ) , predictions based on continuous time estimates; } } } } } , predictions based on harmonic balance estimates;
**, predictions based on amplitude only multiple time scales estimates; } ) } } ) } , predictions based on
amplitude and phase multiple time scales estimates.
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phenomenon. A lower input amplitude (0)5 g) and a higher damping coe$cient (c"0)116)
were used. The response predictions are shown in Figure 8, and the parameter estimates are
given in Table 3.

The parameter estimates and the response predictions arising from them are accurate,
even though the non-linear region is small. The addition of experimental noise combined
with a very small or non-existent two solution region still did not lead to negative
non-linear coe$cients. This was true for signal-to-noise ratios as low as 30dB, far lower
than that encountered in the experiment.

4.4. SECOND EXPERIMENT

Next an experiment was conducted with a larger input amplitude assuring a clear jump in
the beam's steady state response data. The two solution region was still very small.
Experiments conducted at higher amplitudes of excitation resulted in cracks forming in the
beam during the period of the steady state testing and sometimes the beam broke in two.
1)5g was the highest level of excitation that could be used without initiating cracks during
the experiments. The response predictions from the estimated models are shown in Figure 9,
and the parameter estimates as given in Table 4.

All methods perform well in terms of response prediction; the greatest discrepancies were
observed in the phase predictions. Too high a damping coe$cient estimate would result in
the di!erences between the predictions and measurements of the phase of the response.
However, lowering the damping would result in an increase in the response amplitude
predictions which are currently very accurate.

Again, the problem of negative values for the estimates of a
1
and a

2
arose. However, when

the phase was included in the multiple time scales estimation, or when the one-term



Figure 9. Response curves with experimental data at high amplitude excitation (1)5 g). n, steady state response;
) ) ) ) ) ) , predictions based on continuous time estimates; } } } } } , predictions based on harmonic balance estimates;
**, predictions based on amplitude only multiple time scales estimates; } ) } } ) } , predictions based on
amplitude and phase multiple time scales estimates.
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harmonic balance solution was used in the estimation, the resulting coe$cient estimates
were positive and were reasonably close to the theoretical values that were used in
simulations.

4.5. EXPERIMENTAL MODEL PREDICTION CAPABILITIES

It is a concern in system identi"cation that models may only predict the data used for
parameter estimation and the true system behavior is not captured. In order to test the
estimated models' predictive capabilities, the parameter estimates resulting from the lower
amplitude excitation of the beam were used to predict the response of the beam at a higher
level of excitation, and vice versa. For this comparison, only the estimates from the multiple
time scales method that uses both amplitude and phase information were utilized. Similar
results were achieved by using the estimates from the other methods. As before, the multiple
time scales modulation equations were used to predict the response amplitudes and phases.
The results are shown in Figure 10.

The amplitude predictions at lower response levels, i.e., away from resonance, are close to
the measured responses for both models. However, at the higher response amplitudes, near
resonance, the model based on estimates from high-level excitation data predicts response
amplitudes that are lower than those measured. The model based on estimates from low
amplitude excitation data predicts much higher response amplitudes than were observed at
the higher excitation level. This appears to indicate a problem with the estimate, or the
appropriateness of the model for damping, and perhaps a non-linear damping term may be
required in the model. The phase predictions on either side of the resonance do not reach
0 and n radians, respectively, as quickly as the measured phases do, indicating that the
linear damping term should be much lower than predicted. The need for non-linear
damping terms has also been identi"ed by other researchers [29].



Figure 10. Comparison of predictions utilizing estimates at di!erent excitation levels. K, low amplitude steady
state response; n, high amplitude steady state response; } ) } } ) } , predictions based on multiple time scales
estimates from data used in the estimation;** , predictions based on multiple time scales estimates from data not
used in the estimation.
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5. DISCUSSION AND FURTHER ANALYSIS

In an e!ort to determine the sources of the di!erences between the theoretical and
estimated models, a problem not encountered in simulations with the same levels of
excitation as in the experiments, several sources of errors were investigated. First, the
assumed mode shape may have been in error, and hence deviations from this would
in#uence the a

i
. Second, exclusion of the third harmonic in the harmonic balance method

when applied to the experimental data led to results much closer to theory; therefore, it was
speculated that at some signal-to-noise ratio the small third harmonic would be so noise
corrupted that including it would be detrimental to the parameter estimation process.
Third, the di!erences in the damping estimates between the low and high amplitude
excitation indicated that it may be appropriate to include a non-linear damping term.
Fourth, the error surface as a function of the two non-linear term coe$cients, a

1
and a

2
, was

generated to determine the sensitivity of the least-squares estimation to error.

5.1. INFLUENCE OF MODE SHAPE VARIATIONS

In the theoretical development a linear mode shape was used to determine the theoretical
coe$cients a

1
and a

2
, which may introduce signi"cant errors because these non-linear term

coe$cients are complicated functions of the mode shape, as shown in equations (9)} (10).
The accelerometer used to measure the beam acceleration in the experiment can be

modelled as a point mass added to the beam. When the point mass is accounted for in the
modal function /(s), a new linear mode shape is determined. (This development parallels
the work done in reference [18].) The resulting linear mode is shown with the original linear
mode, both non-dimensionalized, in Figure 11(a). The two modes are very close, and despite



Figure 11. Variations in mode shape: (a) ** , linear non-dimensionalized mode shape; } } modi"ed linear
non-dimensionalized mode shape; (b) ** , linear mode shape;

3
, measured mode shape.
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the complexity of the a
i
equations, the resulting changes in the theoretical a

1
and a

2
were

insigni"cant: the new mode shape shifted a
1

from 1)34]104, 1)32]104 and a
2

from
1)45]102 to 1)44]102.

The clamping of the beam is also imperfect and thus the boundary conditions used in
generating the mode shape are not strictly correct. This e!ect is sometimes approximated by
assuming that the beam is of a di!erent length, but still with the perfect clamping. This does
not change the shape and thus would not result in a change in the non-linear term
coe$cients. However, the length that would correspond to the measured second natural
frequency with perfect clamping would be 0)6899m, 4)1mm longer than the actual
length from the clamp to the free end. The experimentally measured mode shape, shown in
Figure 11(b), was very close to the theoretical mode shape indicating that the natural
frequency discrepancies could perhaps be more properly attributed to material property
variations.

5.2. INFLUENCE OF NOISE CORRUPTION ON THIRD HARMONIC

Another possible explanation for the discrepancy between the theoretical and
experimentally estimated a

i
is noise corruption. The in#uence of noise on the parameter

estimation was investigated as even small amounts of noise, like those present in the
experiment, can have a pronounced e!ect on the relatively small amplitudes at the third
harmonic.

A one-term harmonic balance based identi"cation was implemented on the experimental
data in appreciation of the noise-sensitive third-harmonic information. The results (section
4) indicate that the estimates of a

1
and a

2
were much closer to theoretical values when the

third harmonic was not used. This information alone does not prove that experimental



TABLE 5

Coe.cient estimates with simulation data: high amplitude excitation (1)0g)

Harmonic balance Harmonic balance Harmonic balance Harmonic balance
Parameter (noise-free) (10 dB) (60 dB) (80dB)

u
0

("xed) 2)20]101 2)20]101 2)20]101 2)20]101
c 4)43]10~2 4)30]10~2 4)43]10~2 4)43]10~2
a
0

4)36]10~1 4)20]10~1 4)36]10~1 4)36]10~1
a
1

1)39]104 1)33]104 1)39]104 1)39]104
a
2

1)46]102 1)44]102 1)46]102 1)46]102
a(
1

9)97]105 9)89]104 9)97]104 9)97]104
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noise was detrimental to the identi"cation, and while it is safe to assume that the third
harmonic su!ers signi"cantly from the experimental noise, other factors may be involved
such as other modes contributing to the measured response. Recall that with the relatively
noise-free simulation data, inclusion of the third harmonic was shown to help the
identi"cation.

To investigate the direct e!ects of noise on the parameter estimation, noise was added to
the simulation data, generating overall signal-to-noise ratios (SNR) ranging from 10 to
80dB. This corresponded to a signal-to-noise ratio at the third harmonic between!10 and
60dB. Harmonics estimated from the corrupted data were then used in identifying the
system parameters. Ten runs were performed at each noise level and the results which varied
most from the noise-free estimates are reported in Table 5.

The results show that while the noise does a!ect the estimation, the level of noise in the
experiment (around 60dB SNR) does not account for the large variations between theory
and the values obtained with the experimental data.

5.3. INFLUENCE OF NON-LINEAR DAMPING

A mismatch between model and physical system may also contribute to discrepancies
between the theory and the experimental parameters. Deviations in the predicted and
measured phases from the experimental tests indicate that the linear damping term may not
be su$cient. A quadratic damping term has been used in modelling similar systems [29].
The e!ects of including this term are presented here.

While increasing the linear damping had the e!ect of improving the "t to the measured
phase in the region very close to resonance, the "t away from resonance deteriorated. The
behavior away from resonance indicates the presence of a very low level of linear damping.
The inclusion of a term in the model of the form

dbR DbR Dc, (28)

where d and c are constants, would have the e!ect of signi"cantly increasing the damping
present at high amplitudes of response while having a much smaller in#uence at low levels
of response. A particular value of c was chosen a priori by "rst assuming that the estimate of
c"2fu

0
, the linear portion of the damping term, was correct in the small amplitude

transient tests. Then it was also assumed that the increase in damping in the low and
high amplitude steady state tests produced a reasonable estimate of the total damping force
at those amplitudes of response. From these assumptions, the following equations are



Figure 12. Response curves using a non-linear damping term with experimental data: low amplitude excitation.
Steady state response (K), and predictions based on continuous time method (**). The model parameters are;
u

0
"2)13]101, c"4)42]10~2, d"4)44]10~1, a

0
"4)50]10~1, a

1
"!6)03]104, a

2
"!9)99]101.
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derived:

dbR
high

DbR
high

Dc"(c
ss~high

!c
transient

)bR
high

(29)

and

dbR
low

DbR
low

Dc"(c
ss~low

!c
transient

)bR
low

, (30)

where bR
low

and bR
high

are determined from the steady state response data in the non-linear
region where the "t of the models is very good. An estimate of c can be found by
simultaneously solving equations (29) and (30). The range of possible values for
c determined by using this approximation and various experimental results is from 0)957 to
1)54. The inclusion of this term in the model with c set to one and re-estimating the
coe$cients, while "xing the linear damping term to its estimated value from the low
amplitude transient tests, produced the parameters and corresponding predicted curves
shown in Figures 12 and 13.

It is demonstrated that the inclusion of the non-linear damping term enhances the
nearness of the predicted curves to the measured data. Still, the new model form does not
bring the estimated a

1
and a

2
any closer to their theoretical predictions, and in this regard

the study does nothing to explain the di!erence.

5.4. ERROR SURFACE AS A FUNCTION OF a
1

AND a
2

Finally, the error surface was generated in an attempt to understand the signi"cance of
this di!erence between the theoretical and experimentally determined a

1
and a

2
. Clearly,



Figure 13. Response curves using a non-linear damping term with experimental data: high amplitude
excitation. Steady state response (K), and predictions based on continuous time method (**). The model
parameters are: u

0
"2)13]101, c"4)42]10~2, d"4)46]10~1, a

0
"4)75]10~1, a

1
"!7)85]104,

a
2
"!1)68]102.
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the individual terms are quite di!erent. It is also apparent that the combined non-linear
e!ect (which can be loosely thought of as the a(

1
term, described in section 4) is

approximately the same. An appreciation of this nearness can be seen when the error is
examined as a function of a

1
and a

2
.

To generate the error surface, the multiple time scales-based system identi"cation method
was modi"ed. The values for a

1
and a

2
were varied while all the others were "xed to those

known or determined from the estimation. Then, for each (a
1
, a

2
) pair the total error was

calculated and plotted, as shown in Figure 14. Included in the plot is the (a
1
, a

2
) point

associated with the minimum found by the non-linear solver and the theoretical (a
1
, a

2
)

point.
The two solution sets lie in a trough along a line of constant a(

1
, and thus when even low

level of experimental noise are introduced, the algorithm will have di$culty in locating the
true minimum in this trough region. Use of the noise-free simulation data (Figure 14(b)) is
shown to de"ne the solution space more precisely. Adding noise to the simulation data
raised the error surface and introduced slight lateral translations and rotations to the
trough.

6. SUMMARY AND CONCLUSIONS

Three methods for system identi"cation of a one-mode non-linear model of a base excited
beam undergoing transverse vibrations were studied: continuous-time estimation,
harmonic balance estimation, and multiple time scales estimation. The responses in small
amplitude transient tests and higher amplitude sinusoidal tests at steady state were used to



Figure 14. Error in the multiple time scales estimation as a function of a
1

and a
2
: (a) experimental data

(u
0
"2)13]101, c"1)95]10~2, a

0
"4)57]10~1), and (b) simulation data (u

0
"2)20]101, c"1)16]10~2,

a
0
"4)34]10~1). *, minimum value; e, theoretical estimates; ** , line corresponding to a(

1
"constant.
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determine model parameters. Both simulated and experimental data were used to determine
or eliminate the possible causes of theory}experiment mismatch.

While in simulation data it was found to be advantageous to include higher harmonic
information, in experimental data this led to larger mismatches with theoretical predictions.
This could have been the result of errors in the measurement and predictions of
contributions of the higher harmonics caused by noise and "ltering introduced to avoid
aliasing. In simulations at high signal-to-noise ratios the continuous-time method, a direct
use of the di!erential equation modelling the modal behavior, produced the best parameter
estimates. In experiments, the parameter estimates closest to theory were produced by using
a one-term harmonic balance model of the response, or by using the multiple time scales
method utilizing both amplitude and phase information.

Even when estimates of the coe$cients of the non-linear terms were far from their
theoretical values, they still produced good predictions of the response amplitude and phase
behavior. The error surface as a function of the non-linear coe$cients had a trough-like
appearance, and the error slowly decreased towards the minimum along the #oor of this
trough. With this type of error surface, noise has the e!ect of producing large variability in
the estimates in the direction of the trough #oor. The poor estimates of the coe$cients of the
non-linear terms may have resulted from this problem.

Analysis of models generated from tests with di!erent levels of excitation indicated
a problem with the linear damping model. Low amplitude tests produced much lower
damping coe$cient estimates than high amplitude tests. Introduction of an additional
non-linear damping term led to improvements in the model, but good models were only
estimated when the linear damping term was "xed at the value determined in the low-level
transient tests.
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